
Jeff Larkin, August 2017 DOE Performance Portability Workshop

Early Results of OpenMP 4.5 Portability
on NVIDIA GPUs

2

Background

Since the last performance portability workshop, several OpenMP
implementations for NVIDIA GPUs have emerged or matured

As of August 2017, can these implementations deliver on performance,
portability, and performance portability?

• Will OpenMP Target code be portable between compilers?

• Will OpenMP Target code be portable with the host?

I will compare results using 4 compilers: CLANG, Cray, GCC, and XL

8/23/2017

3

OpenMP In Clang

Multi-vendor effort to implement OpenMP in Clang (including offloading)

Runtime based on open-sourced runtime from Intel.

Current status: much improved since last year!

Version used: clang/20170629

Compiler Options:

-O2 -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda --cuda-path=$CUDA_HOME

8/23/2017

4

OpenMP In Cray

Due to its experience with OpenACC, Cray’s OpenMP 4.x compiler was the first to
market for NVIDIA GPUs.

Observation: Does not adhere to OpenMP as strictly as the others.

Version used: 8.5.5

Compiler Options: None Required

Note: Cray performance results were obtained on an X86 + P100 system, unlike the
other compilers. Only GPU performance is being compared.

8/23/2017

5

OpenMP In GCC

Open-source GCC compiler with support for OpenMP offloading to NVIDIA GPUs

Runtime also based on open-sourced runtime from Intel

Current status: Mature on CPU, Very immature on GPU

Version used: 7.1.1 20170718 (experimental)

Compiler Options:

-O3 -fopenmp -foffload="-lm"

8/23/2017

6

OpenMP In XL

IBM’s compiler suite, which now includes offloading to NVIDIA GPUs.

Same(ish) runtime as CLANG, but compilation by IBM’s compiler

Version used: xl/20170727-beta

Compiler Options:

-O3 -qsmp -qoffload

8/23/2017

7

Case Study: Jacobi Iteration

8

Example: Jacobi Iteration

Iteratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

9

Teams & Distribute

10

Teaming Up
#pragma omp target data map(to:Anew) map(A)

while (error > tol && iter < iter_max)
{

error = 0.0;

#pragma omp target teams distribute parallel for reduction(max:error) map(error)
for(int j = 1; j < n-1; j++)
{

for(int i = 1; i < m-1; i++)
{

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));
}

}

#pragma omp target teams distribute parallel for
for(int j = 1; j < n-1; j++)
{

for(int i = 1; i < m-1; i++)
{

A[j][i] = Anew[j][i];
}

}

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);

iter++;
}

Explicitly maps arrays
for the entire while

loop.

• Spawns thread teams
• Distributes iterations

to those teams
• Workshares within

those teams.

13

Execution Time (Smaller is Better)
E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

CLANG, GCC, XL: IBM “Minsky”, NVIDIA Tesla P100, Cray: Cray XC-40, NVIDIA Tesla P100

7.786044 1.851838 42.543545 8.930509 17.8542 11.487634
0

5

10

15

20

25

30

35

40

45

CLANG Cray GCC GCC simd XL XL simd

Data Kernels Other

14

Execution Time (Smaller is Better)
E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

CLANG, GCC, XL: IBM “Minsky”, NVIDIA Tesla P100, Cray: Cray XC-40, NVIDIA Tesla P100

7.786044 1.851838 8.930509 17.8542 11.487634
0

2

4

6

8

10

12

14

16

18

20

CLANG Cray GCC simd XL XL simd

Data Kernels Other

15

Increasing Parallelism

16

Increasing Parallelism

Currently both our distributed and workshared parallelism comes from the same
loop.

• We could collapse them together

• We could move the PARALLEL to the inner loop

The COLLAPSE(N) clause

• Turns the next N loops into one, linearized loop.

• This will give us more parallelism to distribute, if we so choose.

8/23/2017

17

Collapse
#pragma omp target teams distribute parallel for reduction(max:error) map(error) \

collapse(2)
for(int j = 1; j < n-1; j++)
{

for(int i = 1; i < m-1; i++)
{

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));
}

}

#pragma omp target teams distribute parallel for collapse(2)
for(int j = 1; j < n-1; j++)
{

for(int i = 1; i < m-1; i++)
{

A[j][i] = Anew[j][i];
}

}

Collapse the two loops
into one and then

parallelize this new
loop across both teams

and threads.

18

Execution Time (Smaller is Better)
E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

CLANG, GCC, XL: IBM “Minsky”, NVIDIA Tesla P100, Cray: Cray XC-40, NVIDIA Tesla P100

1.490654 1.820148 41.812337 3.706288
0

5

10

15

20

25

30

35

40

45

CLANG Cray GCC XL

Data Kernels Other

19

Execution Time (Smaller is Better)
E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

CLANG, GCC, XL: IBM “Minsky”, NVIDIA Tesla P100, Cray: Cray XC-40, NVIDIA Tesla P100

1.490654 1.820148 3.706288
0

0.5

1

1.5

2

2.5

3

3.5

4

CLANG Cray XL

Data Kernels Other

20

Splitting Teams & Parallel

#pragma omp target teams distribute map(error)
for(int j = 1; j < n-1; j++)
{

#pragma omp parallel for reduction(max:error)
for(int i = 1; i < m-1; i++)
{

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));
}

}

#pragma omp target teams distribute
for(int j = 1; j < n-1; j++)
{

#pragma omp parallel for
for(int i = 1; i < m-1; i++)
{

A[j][i] = Anew[j][i];
}

}

Distribute the “j” loop
over teams.

Workshare the “i” loop
over threads.

21

Execution Time (Smaller is Better)
E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

CLANG, GCC, XL: IBM “Minsky”, NVIDIA Tesla P100, Cray: Cray XC-40, NVIDIA Tesla P100

2.30662 1.94593 49.474303 12.261814 14.559997
0

10

20

30

40

50

60

CLANG Cray GCC GCC simd XL

Data Kernels Other

22

Execution Time (Smaller is Better)
E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
o
n
d
s)

CLANG, GCC, XL: IBM “Minsky”, NVIDIA Tesla P100, Cray: Cray XC-40, NVIDIA Tesla P100

2.30662 1.94593 12.261814 14.559997
0

2

4

6

8

10

12

14

16

CLANG Cray GCC simd XL

Data Kernels Other

23

Host Fallback

24

Fallback to the Host Processor

Most OpenMP users would like to write 1 set of directives for host and device,
but is this really possible?

Using the “if” clause, offloading can be enabled/disabled at runtime.

#pragma omp target teams distribute parallel for reduction(max:error) map(error) \
collapse(2) if(target:use_gpu)
for(int j = 1; j < n-1; j++)
{

for(int i = 1; i < m-1; i++)
{

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1]
+ A[j-1][i] + A[j+1][i]);

error = fmax(error, fabs(Anew[j][i] - A[j][i]));
}

}

Compiler must build CPU & GPU

codes and select at runtime.

25

Host Fallback vs. Host Native OpenMP
%

 o
f

R
e
fe

re
n
c
e
 C

P
U

 T
h
re

a
d
in

g

CLANG, GCC, XL: IBM “Minsky”, NVIDIA Tesla P100, Cray: Cray XC-40, NVIDIA Tesla P100

0%

20%

40%

60%

80%

100%

120%

Teams Collapse Split Teams Collapse Split Teams Collapse Split Teams Collapse Split

XLGCCCrayCLANG

26

Conclusions

27

Conclusions

OpenMP offloading compilers for NVIDIA GPUs have improved dramatically over the
past year and are ready for real use.

• Will OpenMP Target code be portable between compilers?

Maybe. Compilers are of various levels of maturity. SIMD support/requirement
inconsistent.

• Will OpenMP Target code be portable with the host?

Highly compiler-dependent. XL does this very well, CLANG somewhat well, and GCC
and Cray did poorly.

